References

Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures - an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
Charalambous, J., Haines, L. I. B., Harris, N. J., Henrick, K. \& Taylor, F. B. (1984). J. Chem. Res. (M), 220, 2101-2109.

Elerman, Y., Atakol, O., Svoboda, I. \& Geselle, M. (1995). Acta Cryst. C51, 1520-1522.
Helm, D. van der, Merritt, L. L. \& Degeilh, R. (1965). Acta Cryst. 18, 355-362.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Okabe, N. \& Tamaki, K. (1995). Acta Cryst. C51, 2004-2005.
Okabe, N., Tamaki, K., Suga, T. \& Kohyama, Y. (1995). Acta Cryst. C51, 1295-1297.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3. edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.

Acta Cryst. (1996). C52, 1614-1616

$\operatorname{Bis}\left(\eta^{5}\right.$-cyclopentadienyl)bis(formato- O)titanium

Dorothy H. Gibson, Yan Ding, John F. Richardson and Mark S. Mashuta

Department of Chemistry and Center for Chemical Catalysis, University of Louisville, Louisville, KY 40292, USA. E-mail: dhgibs01@ulkyvm.louisville.edu
(Received 1 November 1995; accepted 26 February 1996)

Abstract

The title compound, $\left[\mathrm{Ti}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{CHO}_{2}\right)_{2}\right]$, has a 'bent metallocene' structure type typically found for $\mathrm{Cp}_{2} M X Y$ complexes. The $\mathrm{Ti}-\mathrm{O}-\mathrm{C}$ bond angles are larger than in related titanocene alkoxy complexes, suggesting enhanced π character in the $\mathrm{Ti}-\mathrm{O}$ bonds of the title compound; however, the $\mathrm{Ti}-\mathrm{O}$ bond lengths are longer than those in related alkoxy compounds.

\section*{Comment}

In spite of their importance as probable intermediates in metal-catalyzed carbon dioxide hydrogenation reactions (Jessop, Ikariya \& Noyori, 1995), relatively few η^{1} formato complexes have been structurally characterized

(see Fong, Fox \& Cooper, 1987, and references therein; Hermann, Alt \& Thewalt, 1990; Wöhrle \& Thewalt, 1994). The title compound, (I), has been characterized in order to compare its properties with those of other formato complexes and with those of related bis(acyloxy) derivatives.

(I)

Considering the vectors from titanium to the centroids of the cyclopentadienyl rings, together with the bonds to the two O atoms of the formato ligands, the geometry about titanium can be described as distorted tetrahedral. The $\mathrm{T}-\mathrm{O}$ bond lengths, 1.951 (2) and 1.952 (2) \AA, indicate some π character in these bonds since both are less than $2 \AA$, but the electronwithdrawing nature of the formato groups reduces this character in comparison with that of an alkoxy complex. Thus, $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{Cl}$ shows a $\mathrm{Ti}-\mathrm{O}$ bond length of 1.855 (2) \AA (Huffman, Moloy, Marsella \& Caulton, 1980) and $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{OCH}_{3}\right) \mathrm{Cl}$ shows a $\mathrm{Ti}-\mathrm{O}$ bond length of 1.839 (2) \AA (Gibson, Ding, Mashuta \& Richardson, 1996). The $\mathrm{Ti}-\mathrm{O}-\mathrm{C}$ bond angles have also been taken as further indicators of π character in the $\mathrm{Ti}-\mathrm{O}$ bonds of alkoxy complexes; the shorter Ti O bond lengths are attended by larger $\mathrm{Ti}-\mathrm{O}-\mathrm{C}$ angles [133.2 (2) and $141.4(3)^{\circ}$, respectively]. With acyloxy derivatives, however, this relationship is not maintained. The $\mathrm{Ti}-\mathrm{O}-\mathrm{C}$ bond angles in (I) are 143.3 (2) and

Fig. 1. ORTEPII (Johnson, 1976) plot of the title complex showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.
$145.2(1)^{\circ}$ and are larger than those in the alkoxy complexes. Also, $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{OCOCF}_{3}\right)_{2}$ (Herman et al., 1990) shows $\mathrm{Ti}-\mathrm{O}$ bond lengths which are slightly longer [1.979 (5) and $1.970(6) \AA$] than those of (I) because of the strongly electron-withdrawing CF_{3} groups, but shows large and unequal $\mathrm{Ti}-\mathrm{O}-\mathrm{C}$ angles of 142.8 (5) and $149.2(2)^{\circ}$. Furthermore, $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{OCOPh})_{2}$ (Hoffman, Chester \& Fay, 1983) shows slightly shorter TiO bond lengths $[1.927$ (7) and 1.930 (5) \AA] than (I), but shows much larger $\mathrm{Ti}-\mathrm{O}-\mathrm{C}$ angles of $147.9(7)$ and $148.6(4)^{\circ}$. Thus, larger $\mathrm{Ti}-\mathrm{O}-\mathrm{C}$ bond angles in the alkoxy complexes are not a direct reflection of enhanced π character in the $\mathrm{Ti}-\mathrm{O}$ bonds. By comparison, the 18 e complex trans-[Mo(dmpe) $\left.)_{2}(\mathrm{OCHO})_{2}\right][\mathrm{dmpe}=1,2-$ bis(dimethylphosphino)ethane] shows a normal Mo-O bond length of 2.102 (4) \AA and an $\mathrm{Mo}-\mathrm{O}-\mathrm{C}$ bond angle of $136.7(5)^{\circ}$ (Fong et al., 1987).

Experimental

Synthesis was carried out by the reaction of $\mathrm{Cp}_{2} \mathrm{TiMe}_{2}$ with formic acid (1:2 molar ratio) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution during 1 h at 298 K . Evaporation of solvent afforded the pure product which was then recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene; m.p. 445 K .

Crystal data

$\left[\mathrm{Ti}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{CHO}_{2}\right)_{2}\right.$]
$M_{r}=268.12$
Monoclinic
$P 2_{1} / c$
$a=8.210$ (2) \AA
$b=12.076(5) \AA$
$c=11.949$ (3) \AA
$\beta=99.71$ (2) ${ }^{\circ}$
$V=1167.7(6) \AA^{3}$
$Z=4$
$D_{x}=1.525 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction:
ψ scans (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.95, T_{\text {max }}=1.00$
2856 measured reflections
2689 independent reflections 1933 observed reflections
$[I>3 \sigma(I)]$

Refinement

Refinement on F
$R=0.038$
$w R=0.038$
$S=1.88$
1933 reflections

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=15-18^{\circ}$
$\mu=0.732 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block
$0.50 \times 0.42 \times 0.33 \mathrm{~mm}$
Orange
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=26.94^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 15$
$l=-15 \rightarrow 15$
3 standard reflections frequency: 60 min intensity decay: $<2 \%$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$
Extinction correction:
Zachariasen (1967) type
2 , Gaussian isotropic

203 parameters
H atoms refined with
isotropic displacement
parameters
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\max }=0.024$

Extinction coefficient:
$3.1(2) \times 10^{-6}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

	$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$			
	\boldsymbol{x}	y	z	U_{eq}
	$0.18682(5)$	$0.05394(4)$	$0.22452(4)$	$0.0331(1)$
Ti	$-0.0493(2)$	$0.0223(2)$	$0.2077(2)$	$0.0630(7)$
$\mathrm{O}(1)$	$-0.2162(3)$	$0.1435(2)$	$0.2675(3)$	$0.117(1)$
$\mathrm{O}(2)$	$0.2186(2)$	$-0.0764(2)$	$0.1343(2)$	$0.0462(5)$
$\mathrm{O}(3)$	$0.4748(3)$	$-0.1259(2)$	$0.1242(2)$	$0.0717(8)$
$\mathrm{O}(4)$	$-0.1892(4)$	$0.0590(3)$	$0.2233(4)$	$0.072(1)$
$\mathrm{C}(1)$	$0.3288(4)$	$-0.1403(3)$	$0.1059(3)$	$0.0485(9)$
$\mathrm{C}(2)$	$0.1280(5)$	$0.1450(3)$	$0.0467(3)$	$0.071(1)$
$\mathrm{C}(3)$	$0.2953(5)$	$0.1366(3)$	$0.0732(3)$	$0.064(1)$
$\mathrm{C}(4)$	$0.3500(5)$	$0.1966(3)$	$0.1681(3)$	$0.064(1)$
$\mathrm{C}(5)$	$0.2167(7)$	$0.2452(3)$	$0.2025(4)$	$0.078(2)$
$\mathrm{C}(6)$	$0.0777(6)$	$0.2139(4)$	$0.1265(6)$	$0.091(2)$
$\mathrm{C}(7)$	$0.1998(7)$	$0.0830(4)$	$0.4206(3)$	$0.080(1)$
$\mathrm{C}(8)$	$0.1684(6)$	$-0.0274(3)$	$0.4042(3)$	$0.069(1)$
$\mathrm{C}(9)$	$0.2950(6)$	$-0.0763(4)$	$0.3685(3)$	$0.070(1)$
$\mathrm{C}(10)$	$0.4131(6)$	$0.0066(7)$	$0.3623(4)$	$0.101(2)$
$\mathrm{C}(11)$	$0.3527(8)$	$0.1042(4)$	$0.3972(3)$	$0.091(2)$

Table 2. Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$)
$M(1)$ and $M(2)$ are the centroids of the planes containing $\mathrm{C}(3)-$ $\mathrm{C}(7)$ and $\mathrm{C}(8)-\mathrm{C}(12)$, respectively. $\mathrm{C}-\mathrm{H}$ bond distances for these groups were found in the range $0.78-0.99 \AA$; $\mathrm{C}-\mathrm{H}$ bond distances for formato were found in the range $0.85-0.90 \AA$.

$\mathrm{Ti}-\mathrm{O}(1)$	$1.952(2)$	$\mathrm{O}(3)-\mathrm{C}(2)$	$1.279(3)$
$\mathrm{Ti}-\mathrm{O}(3)$	$1.951(2)$	$\mathrm{O}(4)-\mathrm{C}(2)$	$1.194(4)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.275(4)$	$\mathrm{Ti}-M(1)$	2.049
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.188(4)$	$\mathrm{Ti}-M(2)$	2.059
$\mathrm{O}(1)-\mathrm{Ti}-\mathrm{O}(3)$	$90.56(8)$	$\mathrm{O}(1)-\mathrm{Ti}-M(1)$	107.2
$\mathrm{Ti}-\mathrm{O}(1)-\mathrm{C}(1)$	$145.2(2)$	$\mathrm{O}(1)-\mathrm{Ti}-M(2)$	106.4
$\mathrm{Ti}-\mathrm{O}(3)-\mathrm{C}(2)$	$143.3(2)$	$\mathrm{O}(3)-\mathrm{Ti}-M(1)$	105.8
$M(1)-\mathrm{Ti}-M(2)$	132.0	$\mathrm{O}(3)-\mathrm{Ti}-M(2)$	107.0

Atomic scattering factors were taken from Cromer \& Waber (1974); corrections for anomalous-dispersion effects were made.

Data collection: Diffractometer Control Software (EnrafNonius, 1988). Cell refinement: Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1993). Program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992). Program(s) used to refine structure: TEXSAAN. Software used to prepare material for publication: TEXSAN.

Support of this work by the National Science Foundation (CHE-9112872) and by the NSF/KY EPSCoR Program (EHR-9108764) is gratefully acknowledged. The X-ray equipment was purchased with assistance from the National Science Foundation (CHE-9016978).

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and complete geometry, together with a packing diagram, have been deposited with the IUCr (Reference: BK1212). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for Xray Crystallography, Vol. IV. Table 2.2A, pp. 72-98. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Enraf-Nonius (1988). Diffractometer Control Software. Enraf-Nonius, Delft, The Netherlands.
Fong, L. K., Fox, J. R. \& Cooper, N. J. (1987). Organometallics, 6, 223-231.
Gibson, D. H., Ding, Y., Mashuta, M. S. \& Richardson, J. F. (1996). Acta Cryst. C52, 559-560.
Hermann, G. S., Alt, H. G. \& Thewalt, U. (1990). J. Organomet. Chem. 399, 83-92.
Hoffman, D. M., Chester, N. D. \& Fay, R. C. (1983). Organometallics, 2. 48-52.

Huffman, J. C., Moloy, K. G., Marsella, J. A. \& Caulton, K. G. (1980). J. Am. Chem. Soc. 102, 3009-3014.

Jessop, P. G., Ikariya, T. \& Noyori, R. (1995). Chem. Rev. 95, 259272.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5I38. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1993). TEXSAN. Single Crystal Structure Analysis Software. Version 1.6. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Wöhrle, T. \& Thewalt, U. (1994). J. Organomet. Chem. 468, C1-C3.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1996). C52, 1616-1618

A Diphenylamido-Bromide Complex of Niobium: Dibromo[tris(diphenylamido)]niobium(V) Tetrahydrofuran Solvate

David M. Hoffman and Sri Prakash Rangarajan

Department of Chemistry, University of Houston, Houston, Texas 77204, USA. E-mail: hoffman@uh.edu
(Received 13 November 1995; accepted 17 January 1996)

Abstract

NbBr_{5} reacts with three equivalents of $\mathrm{Me}_{3} \mathrm{SiNPh}_{2}$ in ether to give the title compound, $\left[\mathrm{NbBr}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}\right)_{3}\right]$.$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O} . \mathrm{Nb}\left(\mathrm{NPh}_{2}\right)_{3} \mathrm{Br}_{2}$ has trigonal bipyramidal geometry with axial bromide ligands.

Comment

Several diethylamido-chloride and -fluoride complexes of niobium have been prepared from $\mathrm{Nb} X_{5}$ and trimethylsilyldiethylamine, including $\mathrm{Nb}\left(\mathrm{NEt}_{2}\right)_{3} \mathrm{Cl}_{2}$, $\left[\mathrm{Nb}\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{Cl}_{3}\right]_{2}, \mathrm{Nb}\left(\mathrm{NEt}_{2}\right) \mathrm{F}_{4}$ and $\mathrm{Nb}\left(\mathrm{NEt}_{2}\right)_{2} \mathrm{~F}_{3}$ (Chao,

Polson \& Wigley, 1990; Fuggle, Sharp \& Winfield, 1972; Fowles \& Pleass, 1957). We were interested in preparing similar amido-bromide derivatives to obtain a selection of complexes available for reduction studies (Hoffman \& Rangarajan, 1993; Bott, Hoffman \& Rangarajan, 1995). In this paper we describe the preparation and structure of $\mathrm{Nb}\left(\mathrm{NPh}_{2}\right)_{3} \mathrm{Br}_{2}$, (I).

(I)
NbBr_{5} reacts with three equivalents of $\mathrm{Me}_{3} \mathrm{SiNPh}_{2}$ or LiNPh_{2} in ether to give $\mathrm{Nb}\left(\mathrm{NPh}_{2}\right)_{3} \mathrm{Br}_{2}$. The compound crystallizes from thf $/ \mathrm{CH}_{3} \mathrm{CN}$ as dark red needles, but it is difficult to isolate cleanly from one or two persistent unidentified contaminates. The preparation based on $\mathrm{Me}_{3} \mathrm{SiNPh}_{2}$ more consistently gives clean crystalline material than the one using LiNPh_{2}. Proton NMR spectra for $\mathrm{Nb}\left(\mathrm{NPh}_{2}\right)_{3} \mathrm{Br}_{2}$ show only resonances arising from one kind of phenyl group, consistent with the solidstate structure.
$\mathrm{Nb}\left(\mathrm{NPh}_{2}\right)_{3} \mathrm{Br}_{2}$ crystallizes with one molecule of thf in the lattice. The $\mathrm{Nb}\left(\mathrm{NPh}_{2}\right)_{3} \mathrm{Br}_{2}$ molecules are trigonal bipyramidal with axial bromide ligands (Fig. 1). A crystallographic threefold axis passes through the Nb and Br atoms. The amido ligand NC_{2} 'blades' deviate by less than 4° from the trigonal plane defined by the three N atoms. In this configuration the amido $\mathrm{N} p \pi$ donor orbitals can interact only with niobium $d_{x, i z}$ and not at all with $d_{x p, x 2-12}$. This is expected since $d_{x y}$ and $d_{x 2-y 2}$ are involved in $\mathrm{Nb}-\mathrm{N} \sigma$ bonding and would be too high in energy for an effective interaction with the $p \pi$ orbitals of nitrogen.

The $\mathrm{Nb}-\mathrm{N}$ bond lengths $[1.935(8) \AA$] are similar to those in $\mathrm{Nb}\left(\mathrm{NMe}_{2}\right)_{5}[1.977(17)-2.044(14) \AA$)

Fig. 1. View of $\mathrm{Nb}\left(\mathrm{NPh}_{2}\right)_{3} \mathrm{Br}_{2}$ showing the labelling of the non -H atoms. Displacement ellipsoids are shown at the 40% probability level.

